Tien best beschikbare aluminium legeringen

Tien best beschikbare aluminium legeringen

Nadat de keuze voor een legering is gemaakt, loopt de afdeling inkoop nog al eens aan tegen het feit dat de aluminium legering die door de engineer is gekozen in de markt niet leverbaar is, of niet gangbaar is. Soms zijn legeringen enkel bij een specifieke leverancier beschikbaar. Die leverancier is er bij gebaat als een dergelijke legering op tekening verschijnt.

Ook kom ik tegen dat een extrusie legering zoals een EN AW-6060 T6 op tekening is gezet voor een plaat product. Dit materiaal is dan wel gangbaar maar niet beschikbaar in die vorm.

Om je te behoeden voor deze ongewenste situaties zet ik in dit artikel de 10 best beschikbare aluminium kneedlegeringen op een rij. Voor gietlegeringen klik hier.

EN AW-1050

Deze legering is meest beschikbaar in plaat H14/H24 maar andere hardheden zoals 0/H111 en H19 zijn verkrijgbaar, echter minder gangbaar. (Dikte vanaf 0,5 mm)

Deze zuivere aluminium kwaliteit, 99,5% aluminium, zet je in als het makkelijk zetbaar moet zijn en mechanische sterkte geen rol speelt. Voor binnen gebruik ideaal, maar schop er niet tegen aan, want de kans op een deuk en/of kras is groot. Ook voor slagextrusie delen is dit een veel gebruikte kwaliteit.

EN AW-1200

De EN AW-1200 legering is in de markt beschikbaar als dieptrekkwaliteit. Ook deze legering is een zuivere kwaliteit, 99,0% aluminium en in plaat, O toestand, beschikbaar Hij is niet sterk en diktes zijn vanaf c.a. 0,5 -1 mm beschikbaar. Na vervorming krijg je versteviging door de vorm van je product en neemt dus de sterkte van je product toe, op basis van je constructie/vorm. (Een vlakke plaat is slapper dan een plaat waar een zetting aan zit).

EN AW-5005A (plaat)

Deze kwaliteit leent zich bijzonder voor bijvoorbeeld bouwtoepassingen. De kwaliteit is een stuk sterker dan de EN AW-1050, is goed te zetten en te coaten/moffelen. Wil je een mooie anodiseerkwaliteit, kijk dan naar de specifieke 5005 anodiseerkwaliteiten. Daar zijn verschillende geoptimaliseerde kwaliteiten beschikbaar. Prijs ligt dan weer iets hoger aangezien ze nauwkeuriger geproduceerd zijn. Ook voor behuizingen van apparaten en installaties is dit een mooie kwaliteit. Let bij geanodiseerde toepassing wel op dat je de walsrichting in gelijke richting legt, anders neemt het oog kleurverschil waar. Beschikbaarheid is goed bij 0,5 mm tot 4 mm, daarboven wordt het minder.

EN AW-5754 (plaat)

tranen-rechthoek-jpgDe EN AW-5754 legering is weer sterker dan de 5005. In jachtbouw werd deze legering veelvuldig ingezet hoewel tegenwoordig de EN AW-5083 meer wordt toegepast. De meeste tranenplaten zijn van een 5754 kwaliteit en, net als alle legeringen in de 5000 reeks, geven deze legeringen ook onbehandeld een mooi uniform corrosie beeld. Plaatdikte vanaf 1mm.

EN AW-5083

Zoals gezegd kom je deze legering veel tegen in de jacht- en scheepsbouw. Gewalste plaat van 1mm tot 20-30 of zelfs 60 mm in H111. De mechanische sterkte is de beste tot nu toe en dat is ook precies de reden dat hij constructief wordt toegepast. Tevens is deze legering goed lasbaar. Ook in apparaten bouw, waar producten bijvoorbeeld middels verspaning worden vervaardigd, kom je deze legering tegen. Als je niet wil dat door bewerking spanningen in het materiaal vrijkomen en je product kromtrekt, kies dan een gegoten spanningsarme plaat van een betrouwbare fabrikant in bijvoorbeeld O3 toestand.

beschikbaarheid materialen

EN AW-6005A

Deze extrusie legering is niet tot nauwelijks in de handel beschikbaar maar een extrusie bedrijf, waar je een profiel laat persen, heeft deze legering voor je beschikbaar. Kom je qua sterkte of ductiliteit aan de EN AW-6060 of 6063 net te kort dan kan dit een optie zijn.

EN AW-6060

Deze legering is de meest gangbare, makkelijkst persbare extrusie kwaliteit. Vrijwel altijd wordt hij geleverd in T6 en/of T66 toestand. Mocht je een profiel willen buigen dan kun je beter de T4 toestand inzetten. Je mechanische waarden liggen dan wel op ca. de helft. Ook de T4 is goed leverbaar maar vergt vaak wat meer tijd omdat standaard T6/T66 wordt verkocht.

EN AW-6063

Wie aan de 6060 net te weinig sterkte heeft maar toch nauwkeurige profielen wil laten persen, kan goed uit de voeten met de 6063. Deze legering is net wat sterker. Voor decoratief anodiseren is deze helaas net iets minder mooi dan de 6060 maar technische anodisatie is even goed.

EN AW-6082

Deze hoog sterke kwaliteit is net als de andere genoemde 6000 legeringen goed extrudeerbaar en goed lasbaar. Echter doordat de legering sterker is, is er voor het persen en hogere perskracht nodig Dit gaat ten koste van de fijnheid van de details van het extrusieprofiel zoals je je kan indenken. Ook het warmte-behandelproces luistert bij deze legering nauwer, omdat er sneller gekoeld moet worden om de beoogde mechanische eigenschappen te realiseren. Deze legering is ook als dikke plaat variant beschikbaar, net zoals de EN AW-5083. Bij dikke plaat wordt de toestand T651 toegepast. Ook hier zijn er de gegoten spanningsarme kwaliteiten voor verspanende producten beschikbaar.

Nog enkele wetenswaardigheden van deze legering:

  • Een 6082 is goed te anodiseren echter visueel minder mooi dan de 6060 (wat grauwer)
  • Ook staf en strip (T6) van deze kwaliteit kun je in allerlei maten verkrijgen
  • Deze legering wordt ook voor smeedstukken veelvuldig ingezet

samengesteld

EN AW-7075

De meest gangbare hoge sterkte aluminium legering is de 7075 legering, vaak in T6. Deze legering bevat zink als hoofdlegeringselement maar ook koper is hierin aanwezig. Dat maakt de legering wel sterk maar ten aanzien van corrosiebestendigheid boet je in. Vaak wordt dit vergeten en wordt er achteraf nog een technische laag, bijvoorbeeld anodiseerlaag gespecificeerd. Alles kan maar makkelijk is het niet. Een 7000 legering moet je met de nodige kennis van zaken inzetten.

 

In de tabel staan deze meest voorkomende legeringen voor je weergegeven. Deze kun je in de handel bij vrijwel alle leveranciers vinden. Voor de kwalitatief gegoten plaat varianten kun je bij slechts een paar specifieke leveranciers terecht.

Mocht je nu een vraag hebben of tegen zaken aangelopen zijn, vermeld dit hieronder als commentaar op dit blog. HELP mij en anderen door antwoord te geven op de vraag: Wat is jou grootste frustratie ten aanzien van materiaalspecificatie op tekening? En hoe heb je dat opgelost?

Plaats dit in het commentaarveld hieronder. De meest waardevolle reactie krijgt een bijzondere beloning, een onweerstaanbaar aanbod voor de binnenkort beschikbare online training “wegwijs in aluminium legeringen

Alle kwalitatieve reacties worden beloond en ontvangen het nieuwe e-book met een verzameling van blogs over aluminium en zijn legeringen.

Aluminium design corrosion proof

Aluminium design corrosion proof

Aluminium is known for its corrosion resistance. Untreated aluminium applications like traffic signs and applications at sea are respected examples. Although aluminium is a relatively non noble material it protects itself via a passive oxide layer. Corrosion resistance of Aluminium is sensitive upon certain points in particular, these will be addressed in this blog.

To design aluminium without corrosion take the following aspects into account.

  • pH value of the environment
  • Nobility of Aluminium
  • Crevice corrosion
  • Composition of Aluminum
  • Black corrosion

pH value of the environment

Corrosion resistance of Aluminium is influenced strongly by the pH value of the environment

For normal use, like cleaning, use fluids in combinations with Aluminium with a pH neutral value (7) to prevent corrosion.

To prepare Aluminium for surface treatment you can use this to principle to clean the surface with specific sour fluids. The surface needs to be neutralized and rinsed adequately afterwards to prevent corrosion issues!

phdiagram

 

 

 

 

 

 

 

 

 

Nobility of Aluminium

To avoid corrosion problems with Aluminium nobility of the material needs to be taken into account. Aluminium is a relatively non noble material and will therefore sacrifice itself on behave of more noble metals in moister environment. This leads to galvanic corrosion.

This is a serious aspect using Aluminium products, specialy in combination with other metal parts. To prevent this type of corrosion block out fluids, use the right combinations of metals in the same nobility level or isolate the metals from each other.

nobility

 

 

 

 

 

 

 

 

 

Crevice corrosion
crevice

In a moister environment fluid will creep between narrow crevice due to capillary motion. To prevent crevice corrosion you have to avoid small crevices. Crevice corrosion occurs between crevices with a distance in between 0.2 mm to 0.5 mm. The solution for this matter is to increase crevice distance and reduce amount of contact surfaces. For example: a line contact is better than a surface contact.

With acid or salt fluids the potential for crevice corrosion increases.

 

Composition of Aluminum

Last but not least, the composition of the aluminum alloy influences corrosion resistance of Aluminium. If corrosion resistance is low you can surface threat this material in different ways. Take into account it needs more effort than with better corrosion resistance material.
Aluminium corrosion

 

 

 

 

 

 

If you take these mechanisms into account your design is robust against most common corrosion issues. In that case you take advantage of the natural corrosion resistance of Aluminium.

What was your biggest insight about corrosion issues so fare?

Let me know in the comment box below. This way, you’re helping me and others to design a world with optimal Aluminium use… Thanks in advance!

Three things you need to know about recycling of Aluminium

Three things you need to know about recycling of Aluminium

Technological advancement will increase. We need materials that are available in abundance and can be recycled with no, or as little as possible, impact to the environment. Aluminium recycling is endless.

Product disposal, waste?

When the lifetime of a product ends there are two options: put it somewhere as waste and get environmental pollution or reuse the materials. For each material the possibilities for recycling are different. The big advantage of Aluminium is that you can reuse it time and time again without loss of quality/capability.. Due to the low required energy for recycling and it’s “easy” process, Aluminium is wanted for recycling.

The value of 1 kg Aluminium is equal to 1 kilo recycled Aluminium. (as long as the alloy is the same of course, more about that later). This means Aluminium waste = money.   So Aluminium waste equals money.

Still some people’s perception is, I need primary material, although this is not relevant for Aluminium. The recipe of the alloy is key for the characteristics, primary or secondary.

Each Aluminium product has on average already 52% recycled metal content in Europe. Since Aluminium is a relatively young material, industrial production was only possible after 1886  as opposed to e.g. the iron and it iron age around 1200 B.Chr.) we cannot supply the need at this moment with the current material available via recycling. (yet)

Alloy selection

The value of Aluminium scrap depends on the composition. Aluminium can be selected on form which determines composition.

Aluminium alloys can be selected separated at the manufacturer, uniform scrap has the higher perceived value by the recycler.

After its product life time you can easily make an alloy selection by separating on form. E.g.  if a building is stripped place the profiles on the profile bin, plates together at the plates and knots in the casting corner. You have now a very good separation of the different alloys quite easily.

There are lots of ways to separate alloys some are very basic like above some are very sophisticated. Since Aluminium = money, it’s worth it.

The value of Aluminium scrap also depends on the purity.  For standard commercial alloys, the more pure, e.g. 99,5 % Al,  the cheaper the Aluminium; if you apply it for its application. This is because these low strength alloy’s needed minimum work to fabricate. On the other hand, for recycling, this type of Aluminium with a low level of impurities can be used in many different Aluminium recipes, so value of the scrap is relatively high.

Eddy current

For household waste several possibilities are used. About 70% of all the Aluminium throw away is captured and reused. A welcome advantage here is Aluminium = money. So instead of costing money to burn or landfill it delivers income. For separation different processes can be used. E.g. like eddy current.

Because Aluminium is a conducted light  material, it is influenced by the rotating magnet with North-south poles. This generates an eddy current.  Aluminium pieces crossing this area get accelerated and are separated.

eddycurrent

So if your product consists of different materials you can either design for disassembly, then separate on form or shred into parts.

For Aluminium the loop today is nearly closed. From all the Aluminium material ever produced 75% is still in use. For automotive and building the recycling percentage is above 95%. Since manufacturers know exactly which alloy they prefer, manufacturers offer more and more to take their product back in return at the end of its lifetime. Although the recycling system in Europe is quite efficient and for environmental reasons this is not necessary, economically it can be beneficial. The closed loop of Aluminium will become shorter and more efficient. Just by the fact Aluminium is worth it.

Whats your biggest question about aluminium recycling? Please put your answer in the commentbox below. It will be appreciated! Thanks in advance.

Help, ik heb je feedback nodig

Help, ik heb je feedback nodig

Je kent me nu al even, je ontvangt regelmatig Blogartikelen over aluminium en je hebt misschien al wel een cursus van me gehad, een doorverwijzing of een advies gekregen…… Je kennis over aluminium is gegroeid, misschien gebruik je de schema’s of Alu-Key om makkelijk gegevens van aluminium op te zoeken. Nu kun je al eenvoudiger de juiste aluminium legering, vorm en/of proces inzetten. Allemaal doelen die ik me stel om jou te helpen aluminium nog beter in te zetten.

En nu is voor ons het moment om van ‘good’ naar ‘great’ te gaan.

We gaan veranderen, we gaan dit Blog bijzonder maken, echt remarkable. Mijn focus komt volledig bij jou te liggen. De doelstelling van dit Blog is om jou als lezer zoveel mogelijk te ondersteunen over het optimaal toepassen van aluminium: Dat jij succesvol aluminium kan inzetten voor jouw producten.

En daarom wil ik je graag om hulp vragen, ik zou het zeer waarderen…

Als extraatje heb ik nog iets gaafs voor je, het e-book over aluminium en zijn legeringen, een selectieve verzameling van Blogs. Dit e-book is bijna klaar, jij kan als eerste hierover beschikken.

Vertel me wat jouw problemen/uitdagingen zijn. Ik zou het ontzettend fijn vinden als je een moment de tijd wilt nemen om de volgende drie vragen in het commentaarveld hieronder te beantwoorden.

  1. Wat houd je tegen om optimale producten met aluminium te ontwikkelen?
  2. Wat heb je nu nodig om aluminium succesvol in te kunnen zetten?
  3. Waar loop je tegenaan bij (aluminium) productontwikkelingen?

Graag zie ik jouw antwoord op deze vragen door dit te delen in het commentaarveld beneden aan de pagina! Natuurlijk mag je elkaar ook helpen door op elkaar te reageren. Zodra je commentaar geplaatst is ontvang je meer informatie over het e-book aluminium en haar legeringen.

Is dit voor andere mensen in je netwerk ook relevant, deel gerust dit artikel.

Heel erg bedankt dat je de tijd wilt nemen om te helpen.

Prijs van aluminium

Prijs van aluminium

De prijs van aluminium wordt bepaald door de LME, Londen metal exchange. Is aluminium nu goedkoop of duur? Het ligt eraan hoe je het vergelijkt.

Hierbij wat vuistregels:
Aluminium ten opzichte van staal is zo’n 3x duurder per kg. Echter een goede aluminium constructie is gemiddeld 40% lichter. In aanschaf is de aluminium materiaalprijs dus nog steeds duurder maar geen 3x meer.

Als we aluminium vergelijken met RVS is RVS zo’n 2x duurder, per kg. Koper is c.a. 3x duurder dan aluminium en bij composiet materialen wint aluminium het nog steeds en is het aluminium ook nog eens veel goedkoper tot producten te verwerken.

Prijsverloop
Het is het begin van het jaar en we kijken terug naar het prijsverloop van aluminium in 2016,  2015 en naar de voorgaande jaren.

In 2015 is de waarde van aluminium in de loop van het jaar afgenomen. Als je naar de grafiek kijkt zie je duidelijk het verloop. Het valt op dat de prijs in de tweede helft van het jaar beduidend lager lag dan in de eerste helft van het jaar.

lme2015

 

 

In 2016 heeft aluminium het goed gedaan. Hoewel het hoogste punt niet boven die van 2015 uit is gekomen. De markt is echter aan het aantrekken. De stijging verloopt met ups en downs redelijk constant.

 

lme2016

lme2007-20162

Besparing
Als we 2016 vergelijken met de voorgaande jaren dan is aluminium nog steeds niet duur. Met name als je kijkt naar de specifieke sterkte (sterkte/gewicht) dan is aluminium met de juiste vormgeving een heel krachtig materiaal.

Tel daar de voordelen bij op zoals, onderhoudsvriendelijk, onbehandeld toe te passen (denk aan lichtmasten bruggen e.d.), door de lichte constructie levert het besparing op van brandstof gedurende transport en gebruiksfase, 100% recyclebaar met behoud van kwaliteit met slechts 5% energie ten opzichte van het oorspronkelijke maken, meest voorkomende metaal op aarde etc.

Werk jij regelmatig met aluminium, laat ons weten wat jij denkt

Welke percentage van de kostprijs van jouw product wordt door de materiaalcomponent bepaald ?

Geef antwoord op deze  vraag in het commentaar veld hieronder. Is dit artikel interessant voor iemand in je netwerk, deel dit bericht via linked-in of facebook.

 

Eigenschappen en gegevens van aluminium

Eigenschappen en gegevens van aluminium

Ken je dat? Je bent ontwerper en je hebt een vraag over eigenschappen van verschillende materialen, bijvoorbeeld aluminium legeringen. Je wilt iets weten over sterkte, maar de corrosiebestendigheid is voor je toepassing ook van groot belang. Of je wilt iets over de vermoeiingssterkte weten.

Vragen die ik krijg zijn divers en vaak ook specifiek, de benodigde informatie kan men meestal zelf niet vinden.
Als je het zelf niet vindt kun je kennis vergaren door middel van opleidingen of je kunt het specialisten vragen.

Hier een paar voorbeelden van het soort vragen:

Voor veel van dit soort vragen is het lastig betrouwbare informatie te vinden. Het internet staat vol met gegevens echter hetgeen je nodig hebt vind je vaak niet, of het is lastig te beoordelen of dat specifieke stukje informatie bruikbaar is in jouw situatie. Vaak is de informatie ook “fabrikant specifiek” of moet je zoeken tussen allerlei normen om stukjes informatie bijeen te verzamelen.
Zelf gebruik ik verschillende bronnen.

alu-key-products

  • In eerste instantie is er de aluminium database Alu-Key. Hier staat heel veel informatie binnen handbereik en je kunt de verschillende legeringen goed vergelijken.
  • Als tweede het boek Aluminium Datenblätter of Aluminium Materials sheets, dit kost al meer zoekwerk maar je hebt alles van 1 legering op een paar bladzijden.
  • Als derde de aluminium normen van de NEN. (meest gebruikte: EN 485, EN 755, EN 515, EN 573)
  • Als vierde het Aluminium handbook, fundamentals and Materials.

Ben jij ontwerper en wil je ook makkelijk je aluminium gegevens opzoeken? Je krijgt voor 2 weken een testlogin in de Alu-Key database helemaal gratis!!  Het enige dat je hiervoor hoeft te doen is antwoord geven op de volgende vraag in het commentaarveld hieronder:

Welk hulpmiddel ga jij komend jaar inzetten om sneller en efficiënter je product te ontwerpen?

Zodra jouw comment is geplaatst, ontvang je de link naar de pagina waar je jouw gratis 2 weken toegang tot de aluminium database kunt claimen. Je krijgt bericht zodra de Alu-Key database beschikbaar voor je is.
Wees er snel bij want zodra het aantal testaccounts is vergeven is je kans verkeken.

Aluminium and scandium a winning combination?

Aluminium and scandium a winning combination?

Aluminium scandium alloys

With aluminium we can create all kind of forms. The material is ductile and form-able into all kinds of shapes. However an optimal design requires more effort to design. Start with your ideal form and then integrated functions.
What if we have something extra? Aluminium alloys which are 10 to 40% stronger? We will summarize the advantages on different areas when scandium is added in aluminium alloys .

First of all, strength of Aluminium alloys with scandium increases. This is shown if the graph above.

Next, recrystallization during coldwork (rolling) or extrusion is suppressed and prevented, which leads to better material quality.

scandium-rekristallised

Due to its fine grain refinement Scandium alloys reduces hot cracking in welds, increased strength in the welds and deliver better fatigue behavior.  Welding filler/ thread with scandium has great potential for aluminium.

scandium-filler

When will breakthrough appear?

Aluminium Scandium alloys are new and because of availability and price they aren’t popular jet.  If they were used, it even happened that after product introduction the price of scandium was raised. On the other hand the amount of scandium used in aluminium was relatively high so price was effected drastically. Numbers of 10x material costs are mentioned.

This needs to be addressed before scandium will be commonly used in products.

Today, depending on the percentage of the scandium alloying element, the price of the aluminum with scandium will rice from 30% (at scandium levels of between 0.06 up to 0.12 wt% as used in Al-Zn-Mg (Cu) alloysand) up to e.g. 100%.

Price is under development. The process for mining and reduction is being optimized. Also a better quality scandium and lower quantities per alloy, generate a better proposition. For mining, new possibilities arise. This in total will be responsible for the acceptabele price levels. (make your comment if you want to know the source).

scandium-10x

As mentioned in the past the scarcity leads to dramatic increase of price during application. And no one wants or can effort such surprises. Long term agreements are needed to solve this matter.

 

Main benefits scandium in aluminium alloys:

  • Aluminium gets stronger
  • Better weldability properties
  • Grain structure during forming and extrusion stays intact
  • Stronger at rising temperature, in combination with Zirconium.

Where do you want to use aluminium- scandium alloys in your products? Please write your comment below in the comment box and I sent you different sources for more information.

Would you like to stay informed about aluminium?  schrijf je in, for English updates click here. Looking forward to your response!

 

Lassen van aluminium

Lassen van aluminium

Lassen van aluminium


Aluminium is een metaal dat door middel van lassen goed te verbinden is. Het vergt echter specifieke kennis en vaardigheden. Als we praten over problemen bij het lassen van aluminium hebben we het al snel over poreusheid van de las. Er zijn natuurlijk meerdere mogelijke problemen waar men bij het lassen van aluminium tegenaan kan lopen, poreusheid is de nummer 1.

Waarom poreusheid problemen geeft, is in eerste instantie natuurlijk de betrouwbaarheid, lees sterkte, van de las. Een poreuze las betekent afkeur. Dat kan door de kwaliteitsbeoordelaar als afkeur worden bestempeld of doordat de gewenste sterkte van de las niet gehaald kan worden. Ook bestaat de kans dat de las op visuele aspecten door een klant wordt afgekeurd, of dat er een extra plamuurlaag na het slijpen van de las nodig is om de coatinglaag er strak en netjes op te kunnen zetten.

Kortom poreusheid kost geld.

Wat kun je doen om poreusheid van de aluminiumlas te voorkomen?

Vloeibaar aluminium heeft sterk de neiging om waterstof op te nemen. In vast aluminium is waterstof nauwelijks in opgeloste vorm mogelijk, na stolling zorgt het waterstof voor poreusheid in de las. Om aluminium betrouwbaar te lassen en poreusheid te voorkomen moeten de juiste omstandigheden gecreëerd worden.

Graag deel ik hiervoor de 5 tips:
1.         Las in lage luchtvochtigheid
2.         Werk met een schoon oppervlak
3.         Zorg voor voldoende schermgas en stabiliteit van de gasboog/flow
4.         Werk met ‘schoon’ lasdraad
5.         Spoel slangenpakket voor aanvang van het lassen door

poreus aluminium

Chocolade poreusheid                                                                  Extreme poreusheid in aluminiumas

Las in lage luchtvochtigheid

De luchtvochtigheid van de omgeving is in grote mate bepalend voor de poreusheid van de las. Las bij voorkeur in omstandigheden met een luchtvochtigheid van 40% of lager. Bij een luchtvochtigheid van 60% of hoger zal je  poreusheid in de las tegen komen, ook als je alle andere zaken in orde hebt.

Werk met een schoon oppervlak

Voor het lassen is het aan te raden de oxides te verwijderen van het te lassen oppervlak. Ook vetten en andere verontreinigingen leveren afbreuk aan de kwaliteit van de las op. Afhankelijk van de vorm van het product, de legering en de aantallen zijn er processen in te richten die het werkstuk van een schoon oppervlak voorzien. Een veel gebruikte aanpak is ontvetten en schuren/slijpen.
Na deze behandeling, geen dag laten liggen! maar zo snel mogelijk het werkstuk lassen. Uiterlijk binnen 8 uur. Daarna is de oxide huid weer aangegroeid en een hoop werk voor niets gedaan.

Zorg voor voldoende schermgas en stabiliteit van de gasboog/flow

Gaat de deur open van, bijvoorbeeld, de loods waar gewerkt wordt, heeft dit consequenties voor de stabiliteit van de lasboog. De gasstroom wordt verstoord. Dit betekent dat het lasbad niet volledig wordt afgeschermd door het inerte gas en vocht uit de omgeving in aanraking komt met het vloeibare aluminium. Hierdoor zal opname van waterstof in de lasnaad plaatsvinden.

Werk met ‘schoon’ lasdraad

aluminium lassenLasdraad wordt netjes verpakt en geconditioneerd aangeleverd. Hier wordt moeite gedaan om zo min mogelijk oxides op de lasdraad te realiseren. Dit betekent dat eind van de dag, en zeker, voor het weekend, het lasdraad opgebruikt moet worden of netjes in geconditioneerde omstandigheden terug moet worden opgeslagen. Oxides kunnen namelijk ook verantwoordelijk zijn voor waterstofopname in de las.

Oxides van aluminium zijn bijna net zo zwaar als ijzeroxides. Echter het soortelijk gewicht van aluminium zelf is 3x minder dan van staal. Bij staal blijft de oxide drijven op de smelt, bij aluminium kunnen de oxides als je niet goed op past in de smelt zakken. Boven het hoofd lassen heeft dit nadeel niet, echter dit is een lastige laspositie.

Spoel slangenpakket voor aanvang van het lassen door

Last but not least, spoel het slangenpakket voor het lassen van aluminium door. In het slangenpakket wordt draad en het gasmengsel toegevoerd naar de toorts. Wanneer het lasapparaat een tijdje heeft stilgestaan is het gas verdwenen en is de omgevingslucht aanwezig. Voor het lassen eerst doorspoelen zodat deze gevuld is met het gewenste gasmengsel en dan pas beginnen met lassen, om een goede afscherming van het lasbad te kunnen garanderen.

Poreusheid is altijd in geringe mate aanwezig

Ook als je alle bovenstaande voorzieningen hebt getroffen is het niet geheel uit te sluiten. Er zit altijd wel een belletje in omdat ook in 40% luchtvochtigheid nog altijd waterstof beschikbaar is. De lasnormen accepteren waterstof in de aluminiumlas, meer dan in staal, omdat bekend is dat het onvermijdelijk is. Bij een goede las is het echter minimaal.

las poreusheid

Heb jij vragen over het lassen van aluminium? of zou je als ontwerper meer kennis over het lassen willen krijgen? Heb je interesse in een lascursus voor ontwerpers?
Vul dan deze vragenlijst in, dan ontvang je van mij een hand-out met de verschillende aluminium lasprocessen op een rij. Natuurlijk kun je hieronder ook je reactie geven.

Ben jij engineer en heb je een vraag over aluminium lassen van jullie product neem contact op.

 

Extrusie van aluminium

Extrusie van aluminium

Aluminium extrusie: thermomechanisch omvormen van aluminium

Aluminium extrusie is een plastisch vormgevingsproces waarin een voorverwarmd stuk aluminium, de billet, wordt omgevormd tot een langwerpig halffabrikaat met een constante dwarsdoorsnede, het profiel. De aluminium billet wordt daarbij door een plunjer met grote kracht door een één of meer matrijsopeningen geperst. De vorm van de opening in de matrijs bepaalt de profielvorm.

Extrusie is een veelzijdig proces waarmee een scala aan productvormen kan worden gerealiseerd. Met extrusie kunnen bijvoorbeeld kleine profielen met een typische afmetingen van enkele millimeters en een gewicht van enkele grammen per meter worden geproduceerd tot en met extreem grote en zware profielen met typische afmetingen van circa 1 meter en een gewicht van meer dan 100 kg/m. Profielen kunnen onderverdeeld worden in volprofielen en holle profielen. Bij volprofielen is de vorm vastgelegd door de buitencontour van het profiel. In holprofielen zijn er daarnaast één of meer holtes in de profieldoorsnde, een holle ruimte omsloten door aluminium. Veel van de aluminium kneedlegeringen kunnen door extrusie gevormd worden.

vol-hol-profiel

 

 

Legeringen

aluminium legeringenDe legeringen voor extrusie zijn onderverdeeld in niet-verouderbare legeringen en legeringen die na extrusie kunnen worden warmte behandeld, veelal met als doel een verhoging van de sterkte. De verschillende legeringen hebben specifieke toevoegingen om de eigenschappen van met materiaal te beïnvloeden. De verschillende hoofdlegeringsgroepen worden toegelicht in de online aluminium training. De legeringselementen hebben effect op de extrudeerbaarheid. Zo heeft bijvoorbeeld de toevoeging van magnesium een sterk negatief effect op het vloeigedrag. Er is dan een hogere perskracht nodig om het materiaal te vervormen. Ook zal de toevoeging van legeringselementen het materiaal eerder doen smelten als de temperatuur oploopt. In de tabel is de verwerkbaarheid van veel voorkomende extrusielegeringen weergegeven, gerangschikt op basis van de relatieve extrudeerbaarheid ten opzicht van de zeer veel toegepaste legering EN-AW 6060.

Proces

Aluminium extrusie is een thermomechanisch vormgevingsproces. Dat wil zeggen dat het omvormen van de billet gebeurt door vervorming van het materiaal bij verhoogde temperatuur. De verhoogde temperatuur is noodzakelijk om het aluminium in een zachte, kneedbare toestand te brengen, zodat het omvormen mogelijk wordt. Tijdens het extrusieproces warmt het materiaal verder op door vervormingsenergie en wrijving, waarbij de temperatuur kan oplopen tot 450-550°C en soms zelfs nog hoger. De maximum procestemperatuur wordt begrensd door het punt waar de eerste legeringsfasen in het aluminium beginnen te smelten.

limiet-diagram-extrusieAls deze temperatuur wordt benaderd dan gaat de oppervlaktekwaliteit van het profiel sterk achteruit door de vorming van extrusiestrepen en/of “pick-up” : dit zijn kleine deeltjes aluminium die op het oppervlak vastkleven. Boven deze temperatuur verliest het materiaal zijn sterkte en zal het profiel oppervlaktefouten gaan vertonen of zelfs gaan scheuren. Bij een te lage temperatuur is  het aluminium onvoldoende kneedbaar en is er onvoldoende perskracht om het materiaal door de matrijs te persen. Ook zal bij een te lage temperatuur het aluminium niet in de juiste “toestand” komen, waardoor na de warmtebehandeling niet de vereiste sterktewaarden zullen worden behaald. Het procesvenster is dus een samenspel van vervorming en temperatuur. Dit kan schematisch worden weergegeven in een “limietdiagram” zoals hierboven is weergeven. Het optimum bevindt zich bovenin het limietdiagram, waarbij de extrusieproductiviteit optimaal is, met behoud van goede producteigenschappen. Voor de verschillende legeringen, met hun specifieke verwerkingseigenschappen zoals hierboven beschreven, zal het limietdiagram verschillend zijn. Ook de matrijsuitvoering gerelateerd aan de profielvorm, heeft uitwerking op het diagram en dus op de optimale procesomstandigheden.

aluminium extrusieHiernaast is een voorbeeld getoond van de limietdiagrammen voor twee legeringen met verschillende verwerkingseigenschappen. Duidelijk is te zien dat een moeilijk verwerkbare legering een kleiner procesvenster heeft met een lagere optimale productiviteit. Een ander effect van het thermomechanisch omvormen is de uitwerking op de kristalstructuur van het aluminium. Afhankelijk van de legering zal het materiaal kunnen rekristalliseren, waarbij de door extrusie sterk vervormde metaalstructuur zich herstelt en er zich “nieuwe” kristallen zullen vormen. Als gevolg van de procesomstandigheden kan de grootte van deze nieuwe kristallen op verschillende plaatsen in het profiel verschillend zijn. Dit uit zich dan vooral na het (met name decoratief) anodiseren van profielen, waar de onderliggende kristalstructuur zich op het zichtvlak manifesteert als ongewenste langsstrepen. Door een goede combinatie van matrijsontwerp, legeringskeuze en procesomstandigheden kan het risico op het optreden van dit fenomeen worden voorkomen.

Nadat het profiel de extrusiepers verlaat wordt het materiaal afgekoeld. Afhankelijk van het type profiel en de legering wordt dit bewerkstelligd met geforceerde lucht of water. Dit laatste kan in de vorm van mist- of nevelkoeling, of voor zeer zware profielen, door middel van een staande golf in een waterbak waar het profiel doorheen wordt geleid. Door het koelen is het profiel sneller handelbaar. Het belangrijkste is echter dat de microstructuur wordt “ ingevroren” waardoor de sterkte van het profiel gunstig beïnvloed wordt. De navolgende warmtebehandeling, het verouderen maakt dit proces van versterken voor een veredelbare legering compleet. Deze procesroute is voor veel legeringen uit de 6000 en 7000-klasse toepasbaar (niet voor de 5000 reeks). Voor zwaathermische-route-t5-procesrdere profielen of specifieke legeringen (in bijv. de 2000 & 7000 reeks) kan het product onvoldoende snel worden
afgekoeld. In dat geval vindt er een tussenstap plaats, waarbij het profiel in een aparte oven nogmaals wordt opgewarmd tot een hoge temperatuur ca. 550°C en daarna wordt afgeschrikt in een vloeistofbad. Aansluitend kan het profiel dan worden verouderd: het gedurende enkele uren gloeien van het materiaal op een verhoogde temperatuur (typisch rond 200°C) waardoor de sterkte van het product aanzienlijk toeneemt.

Zoals je leest vereist het produceren van kwalitatief hoogwaardige profielen proceskennis. Tevens is een gedegen inzicht in de eigenschappen van de extrudeerbare aluminiumlegeringen benodigd.

Andrew den Bakker, Hartelijk dank voor het delen van je kennis!
Wil je dat Andrew contact met jou opneemt? mail Andrew direct.

Welke van de bovensmailto:info@lightalloytech.comtaande onderwerpen is voor jouw een ‘eye’ opener of wil je meer van weten? Laat het alsjeblieft weten in het commentaarveld hieronder. De eerste 3 krijgen een super aanbod voor de net nieuwe online training: aluminium legeringen meer info.

Ik zie je reactie tegemoet!
Wil je op de hoogte gehouden worden over Aluminium? schrijf je nu in en ontvang 1x per maand de update.

 

Aluminium anodiseren

Aluminium anodiseren

Aluminium anodiseren

Wanneer je een aluminium product een mooie uitstraling wilt geven door middel van de oppervlaktebehandeling anodiseren,  zijn hier een aantal tips die je helpen een mooi resultaat te realiseren.

  • Materiaal keuze
  • Materiaal combinaties
  • Kleur
  • Omgeving/Laagdikte

Materiaalkeuze

De keuze van de legering is in eerste instantie vaak gericht op de sterkte en het proces dat wordt gebruikt voor de vervaardiging. Voor een mooie heldere anodiseerlaag is het gewenst om legeringen in te zetten met zo min mogelijk koper, zink en silicium. De 6000 legeringen zijn over het algemeen heel mooi te anodiseren. Voor alle legeringen geldt hoe meer legeringselementen hoe minder helder de anodiseerlaag. Het ene legeringselement heeft hier meer invloed op dan de andere.

tekst cursief blog september.JPG V02Ook de verdeling van legeringselementen binnen een legering kan van invloed zijn op de kleur en uitstraling van een product. Zoals in de 5000 reeks met het legeringselement Magnesium. Er zijn voor gevel toepassingen daarom speciale EN AW-5005 legeringen verkrijgbaar die voor het anodiseren geoptimaliseerd zijn.


Materiaal combinaties.
Bij een EN AW-5083 kwaliteit zijn, afhankelijk van het fabricage proces, wisselende resultaten mogelijk. Een gegoten gefreesde plaat krijgt van zijn leverancier vaak een speciaal protocol voor het anodiseren mee. De truc hier is om heel kort te beitsen voor het anodiseren.

IMAG1100-1024x397Bouw je een product samen van verschillende legeringen, dan zie je na het anodiseren verschillende kleuren. Je ziet als het ware het verschil in legeringen terug in de kleur. Onbehandeld is dit ook aanwezig maar valt dit minder op. Om kleurverschil te voorkomen kun je het beste dezelfde legering toepassen, ook voor het lasdraad. Ten aanzien van kleur kun je nog aanvullende afspraken maken. In overleg met de anodiseur is bijvoorbeeld een boven- en ondergrens door middel van samples vast te leggen.

Kleur

Wil je mooie heldere kleuren? Kies dan legeringen die goed te anodiseren zijn met zo min mogelijk legeringselementen zoals hierboven ook besproken. Goud- en bronstinten zijn goed UV-bestendig en houden hun kleur vast. Andere fellere kleuren zijn minder UV-bestendig maar voor binnentoepassingen prima.
Wil je gietwerk in mooie anodiseerkleuren dan zal je een Aluminium-Magnesium legering moeten toepassen. Deze legering is helaas minder prettig te gieten en in zijn vorm te krijgen als de standaard Aluminium-Silicium gietlegeringen.

combinatie afbeelding

Laagdikte en omgeving

Voor normaal anodiseren ligt de dikte tussen de 5- 25 µm. Afhankelijk van de toepassing en functie van de anodiseerlaag is de dikte verschillend. Voor binnentoepassingen is een geringe laagdikte al voldoende. Bij buitentoepassingen is het afhankelijk van de locatie; dicht bij of verder van de kust… Dichtbij de kust ziet men voor een anodiseerlaag wel tot 20-25 µm. Dikkere laagdiktes zijn alleen mogelijk via een ander anodiseerproces, bijvoorbeeld het hard anodiseren. Bij normaal anodiseren zal de laagdikte die opgebouwd wordt aan de buitenzijde weer oplossen en is 20-25 µm dus wel het maximum.

Heb je een vraag of waardevolle aanvulling over aluminium anodiseren? Vermeld dit in het commentaarveld hieronder. Ik zie je reactie tegemoet!

Wil je op de hoogte gehouden worden over Aluminium? schrijf je nu in en ontvang 1x per maand de update.