Future responsible design and aluminium

Future responsible design and aluminium

Ten reasons for aluminium in future responsible design:

  1. Aluminium is the most common metal on earth.
  2. Aluminium is 100% recyclable without degradation of the material.
  3. Remelting aluminium cost a low amount of energy, only 5% compared to initial production.
  4. Aluminium is a light material and therefore saves energy during transport and lifetime.
  5. Aluminium has great malleability, you can create all kinds of forms and the forming requires low amount of energy.
  6. Aluminium has a high specific strength, so strong and light at the same time.
  7. Function integration possibilities are huge, due to high deform-ability parts can be reduced saving time effort and money.
  8. Easy and fast to machine with long tool lifetime.
  9. Aluminium is highly corrosion resistant, therefore maintenance is relatively low, saving cost energy and effort.
  10. Aluminum waste equals money, this is the autonomic motive why aluminum is recycled so much.

 

Disadvantages of aluminium:

  1. It requires a better understanding of the design possibilities, there are so many options to from your product.
  2. Aluminium is flexible. If you need stiff products you have to acquire better design skills in order to solve this via design.
  3. Relatively low melting point (660°C pure aluminium) which allows you to use low energy in order to form your product.
  4. Aluminium is relative un-noble, design for corrosion requests more knowledge to make use of the passive protective oxide layer and prevent problems like galvanic corrosion by false design.
  5. The application of aluminium requires an pH neutral environment. In basic or acid environment the protective oxide layer will decrease.
  6. There is a wide variety of alloys which are used depending on the design need, luckily there are 8 main categories which are well defined.
  7. Aluminium is sensible for fatigue like most metals, you need to consider the aluminium design rules in order to create a robust design in dynamic application. But it allows you to create predictable interval inspections.
  8. Aluminium transfers heat, for fire or welding application it cools the heat and more energy is required to increase temperature.
  9. Due to its corrosion resistance it takes relatively long to decrease back to aluminium oxide in nature in dry environment keeping your product save.
  10. You won’t find it back in nature when it decreases since the earth crust consist of 8% aluminum oxide, aluminium will not damage the environment.

What’s your reason to use aluminium for your product? Let me and everybody know by commenting on this blog and I will sent you the checklist for aluminium product design.
Kind Regards, Ellen

How to choose the right alloy?

How to choose the right alloy?

Choosing the right aluminium alloy can be hard if you are not that familiar with all its variety.

Depending of application from and requirements choosing can be difficult. What material is available and when? Is a custom dedicated alloy developed for you? If you are an engineer and choose different materials each day probably aluminium is not a material you know all about. Maybe you even let your supplier choose the alloy for you. How do you keep track of quality and remain supplier independent? Let alone be purchaser friendly and cost effective?

Specifying the material aluminium on your drawing or 3d model requires aluminium knowledge. Let me help you. At first which basic form will your part come from?

Like the logo of aluminium metal knowledge displays there are three basic variations of aluminium categories:

Plate, Profile and Castings.

Plates

Thin plates below 4 mm are mainly in 1000 series 3000 series and the strongest in 5000 series.

Profile

Bars and profiles are 2000, 6000 and 7000 alloys. Almost all profiles are made from 6000 alloys. Bars and strips can be 2000 and 7000 alloys as well. See aluminium extrusion alloys (DUTCH). Those alloys are also often used in additional processes like forging, hydroforming or machining.

Castings

Castings are made mostly from 4000 series alloys which have 5 digit numbers like AC 46000. Commonly used for high pressure die casting is EN AC-46200 and for sandcasting EN AC-43000.

Table Cast alloys

For more info see Cast alloys (DUTCH).

Second question is which requirement is crucial /most important?

Strength, elongation, corrosion resistance, malleability etc?

Depending on the number one and the order of the other aspects a number of alloys are suitable for the application.

Of course there are many more questions to consider specifying the right alloy for your application. You can contact me if you need help but before you do first answer this question:

Why is it difficult for you to specify the aluminium alloy? Two engineers will win free access to the online course via a raffle just by answering this question. Put you answer in the comment box bellow and I let you know if you are the winner. Every reaction receives the others questions you should consider designing an aluminium product by adding checklist in your comment.

Aluminium regards,
Ellen

Wat is anodiseren?

Wat is anodiseren?

Anodiseren wordt voor aluminium veelvuldig toegepast, maar wat is het nu eigenlijk? Waarom wordt dit zoveel gebruikt en hoe komt het dat er variatie in uiterlijk is?

Kort gezegd: Anodiseren is een kunstmatig aangebrachte verdichte aluminium oxidelaag onder invloed van stroom in een natchemisch proces.

Anodiseren wordt in België vaak eloxeren genoemd. Eloxeren is een ander woord voor anodiseren, maar is hetzelfde.

Een anodiseerlaag op aluminium is dus een oxidelaag, dit is zonder kleurproces een transparante laag. Hierdoor werkt de laag als een vergrootglas over het aluminium. Zitten er ongelijkmatigheden of bijvoorbeeld een vingerafdruk op het aluminium, grote kans dat na het anodiseren dit aan het licht komt. De anodiseerlaag is een keramische en glasachtige laag. Hard als schuurpapier door het aluminium oxide en het werkt als tevens als een beschermende laag. Wat de natuurlijke oxidelaag op het aluminium doet ter bescherming van corrosie doet de anodiseerlaag eveneens maar dan beter en met een mooier visueel uiterlijk.

Hoe ziet het anodiseerproces eruit?

 

 

Het aluminium wordt voor het proces middels een aantal stappen gereinigd en van zijn natuurlijke oxidelaag ontdaan. Daarna worden de overgebleven legeringselementen aan het oppervlak middels een desmut behandeling verwijderd en is het materiaal klaar voor anodisatie.

In een bad met een spanningsverschil tussen anode en kathode zal het aluminium versneld reageren met zuurstof in de zure, meestal zwavelzuur, waterige oplossing. Omdat het milieu is afgeregeld op het proces en de stroomdichtheid exact wordt ingeregeld wil het aluminium uniform over het product zo snel mogelijk reageren en vormt oxides. Het begint bij het “aangrijpingspunt” waar vandaan het groeiproces start.

 

 

Het aluminium wordt omgezet naar aluminium oxide

Het aluminium dat omgezet wordt naar het aluminiumoxide neemt 2x zoveel ruimte in als het oorspronkelijke aluminium. Dit betekent voor een anodiseerlaag 2/3 in het materiaal en 1/3 erop. De afmeting van het product neemt dus toe.

Hoe kan het dan dat veelal de profielen geanodiseerd in de markt een kleinere maatvoering hebben dan ongeanodiseerde vraag je je misschien af.

Dat heeft te maken met het beitsproces van het aluminium product. Om het aluminium van zijn oxide te bevrijden wordt er materiaal afgebeitst van het product. Hierdoor is voor profielen in de markt de maatvoering van geanodiseerd vaak kleiner dan bruut (=onbehandeld).

Kleurvariatie van de anodiseerlaag

De kleur van een (ongekleurde) anodiseerlaag wordt beïnvloed door heel veel parameters. Denk aan temperatuur, stroomdichtheid, samenstelling van het bad, laagdikte en zelfs walsrichting en natuurlijk de legering.

Wil je aluminium in dezelfde kleur dan is het verstandig een boven- en onderwaarde af te spreken met de anodiseur door middel van samples, vastgelegd bij de anodiseur.

Het blijft een materiaaleigen laag en geen ralcoating. Wil je geen kleurverschil zien? Design dan kleurvariatie in je ontwerp. Zie onderstaand voorbeeld.

 

Ben jij ENGINEER en wil je het nieuwe e-book over corrosie van aluminium en oppervlakte behandelingen?  Heb jij een specifieke vraag of opmerking over anodiseren van aluminium? Vermeld dit hieronder in het commentaar veld met de opmerking corrosie e-book ja en ik ga voor jou het e-book maken en toesturen!

Aluminium solderen mogelijk?

Aluminium solderen mogelijk?

Solderen en aluminium gaat dat wel samen? Als je zoveel warmte inbreng geeft aan het materiaal levert het wel een goede verbinding/constructie op?

Bij solderen van aluminium komen veel vragen naar boven. In dit artikel geven we je een inkijk op een aantal vragen. Dit verhaal is tot stand gekomen door het leuke gesprek dat ik met Erik Brom van Mat-tech voerde over het wel en wee van aluminium solderen. Dank je wel Erik!

Net als andere metalen is het mogelijk om aluminium te solderen.

Binnen het solderen maken we onderscheid tussen zacht- (beneden de 450°C) en de hardsoldeer processen (boven de 450°C). De hardsoldeer processen worden gebruikelijk hoog temperatuur solderen genoemd.

In dit artikel nemen we vier meest gebruikte manieren van solderen van aluminium kort door:

  • Zacht solderen zonder flux
  • Hoog temperatuur solderen met flux (Nocolok)
  • Vacuüm solderen
  • Diffusion bonding (soldeer alternatief)

 

Zacht solderen zonder flux

Zacht solderen gebeurt onder lagere temperatuur met een soldeerdraad die een lager smeltpunt heeft dan het te solderen materiaal. Hier wordt gewerkt met bijvoorbeeld tin of zink als hoofdbestanddeel van de draad. (Er zijn ook processen met flux mogelijk maar dat is weinig gebruikt doordat flux hier een blijvend corrosief effect heeft.)

 

Hoog temperatuur solderen met flux

Voor het solderen met flux voeg je een soldeerflux toe die ervoor zorgt dat de oxidehuid wordt gebroken en er onder invloed van warmte een verbinding tot stand wordt gebracht.

 

Vacuüm solderen

Vacuüm solderen wordt voor o.a. warmtewisselaars gedaan. Dit is een hoog temperatuur soldeerproces. Het geclad materiaal heeft aan de buitenkant een dun laagje aluminium met een lagere smelttemperatuur dan het kernmateriaal. Door het verhogen van de temperatuur van het onderdeel in de oven smelt de buitenste clad-laag en vormt de verbinding tussen de delen. Nadeel hierbij is dat het de nodige nauwkeurigheid vereist en het alleen loont bij grote aantallen. Dit omdat het inregelen van het proces veel energie en tijd kost.

 

Diffusion bonding

Diffusion bonding is eigenlijk geen soldeer proces, er wordt geen soldeer of flux toegevoegd . Het proces gaat iets anders. Door het verhogen van temperatuur tot ca 50-100 graden onder de smelttemperatuur én het onder mechanische druk zetten van de te verbinden delen wordt het aluminium van het ene deel tegen het aluminium van het andere deel gedrukt en visa versa. Door de plastische deformatie van het oppervlak wordt een metallische verbinding tot stand gebracht. Dit gebeurt door diffusie van beide materiaal delen. Vaak zijn dit plaat-plaat verbindingen.

 

Solderen en aluminium - Aluknowledge

 

Wat is de beste soldeer verbinding?

De meest ideale verbinding is een verbinding die je niet opmerkt en die het dichtst bij het basis materiaal ligt. De beste en sterkste soldeerverbinding is die zonder flux met voldoende overlap en geringe warmte-inbreng. Dit is echter per applicatie verschillend en in te regelen per situatie.


Hoe sterk is een soldeerverbinding?

Als er goed gesoldeerd wordt net zo sterk of sterker dan een lasverbinding!

 

Welke legeringen kun je solderen?

Eigenlijk alle legeringen van 1000, 3000, 4000, 6000, 7000 en dus ook de gietlegeringen. Alleen van de 2000 legeringen weet ik het niet, nu is een legering met koper zo wie zo niet prettig voor een verbinding door warmte-inbreng maar de EN AW-7075 lukt ook, dus wie weet.

 

Wat zijn andere voordelen van een aluminium soldeerverbinding?

Je hebt geen last van porositeit. Tijdens het maken van de verbinding moet je wel zorgen dat zuurstof niet kan reageren met het aluminium.

Je hebt een vol metallisch contact, dus een goede warmteoverdracht en elektrische geleiding


Hoe komt het dat een soldeerverbinding sterker kan zijn dan lassen?

Omdat je op heel veel punten tegelijk een verbinding tot stand kan brengen.
Ander voordeel is dat je veel minder vervorming door spanningen in de verbinding overhoudt, doordat je vaak het materiaal overal gelijktijdig evenveel opwarmt. Je hebt geen nadeel van de bij het lassen benodigde lasvolgorde.

 

Zijn er ook nadelen?

Ja. Je hebt impact van warmte op het materiaal ook bij diffusion bonding waar je geen smelt van materialen hebt.

Tja, en je moet een product vaak in de oven behandelen dus te grote afmetingen zijn niet haalbaar. Denk aan max een meter bij een meter.

Het zo ingenieus geproduceerde aluminium boet in op sterkte door warmte-inbreng!

Er zijn maar weinig bedrijven die dit kunnen.


Wat heb je nodig voor een goede verbinding behalve een betrouwbare toeleverancier?

Een in het product geëngineerd verbinding met geschikt verbindingsvlak en een dedicated soldeer-spleetbreedte. Ook is het belangrijk dat er gewerkt wordt met schone onderdelen. Eigenlijk vergelijkbaar als bij lijmen. Alleen is dit een veel sterkere verbinding.


Wanneer zou je solderen in het bijzonder aanraden?

Het is altijd het overwegen waard. Afhankelijk van product, vorm en aantallen. Als je er met lassen of lijmen niet uitkomt, of je wilt een sterker, beter en een betrouwbaarder proces, overweeg dan solderen.

 

Ben jij ENGINEER en heb je een vraag over solderen van aluminium? Stel deze hieronder en je ontvangt antwoord plus de eerste 3 technische vraagstukken ook nog eens een  gratis skype gesprek van 30 minuten!

De ultieme catalogus voor aluminium profielen

De ultieme catalogus voor aluminium profielen

Waarom zijn er zo weinig standaardprofielen van aluminium?

Als je kijkt in de markt zijn er enorm veel aluminium profielen die toegepast worden. Zoek je naar dat ene profiel dat je net gezien hebt, en je kunt het nergens vinden, wat dan? Overal waar je het vraagt krijg je nul op request. Hoe kan dat nou? Je bent maar aan het zoeken en zoeken en je vindt niet datgene wat jij wilt hebben. Waarom eigenlijk? Heel simpel, er zijn zo ontzettend veel verschillende mogelijkheden met aluminium dat je al heel snel een profiel voor jouw specifieke toepassing kunt maken met een relatief lage investering. Een matrijs kost helemaal niet zoveel geld, ergens tussen de € 1000 en € 1500 voor een vol profiel en € 1000- € 2500 voor een hol profiel. Ga je naar de grotere afmetingen, ja dan zijn de matrijskosten een stuk hoger. Hoe complexer en groter, hoe duurder, denk hierbij aan de richting van € 25.000. Het komt wel voor, maar dat zijn dan speciale profielen. Voor de meeste profielen van ca. Ø100mm kost het dus niet zoveel.

.

Zijn er wel standaardprofielen?

Ja, er zijn wel standaardprofielen. Deze profielen zijn er van verschillende merken. Je kunt ze makkelijk koppelen en ze worden heel veel toegepast voor testopstellingen. Je koopt profiel en een aantal verbindingsstukken en je zet het in elkaar zoals jij het wilt hebben. Of je maakt er een product mee…

.

Infento groeibouwpakket (www.infentorides.com/nl)

Andere profielen. Tja, dat zijn eigenlijk specials. Er zijn handelaren die hun eigen specifieke profielen voeren voor bijvoorbeeld trailerbouw. Of voor lekdorpels en andere afwerkprofielen t.b.v. de bouw. Ieder heeft er een aantal opgenomen in hun catalogus. Sommige hebben hun eigen assortiment ontwikkeld t.b.v. bijvoorbeeld signing systemen, scheidingswanden of terrasafscheidingen.

De niet intelligente U profielen of hoekprofielen heeft iedereen, maar vaak is dat nou niet het profiel waar je naar op zoek bent.

.

Wat moet je dan?

Je eigen extrusie-profiel! Maar hoe? Daar heb je enige kennis van zaken voor nodig of een betrouwbare partner die je hierbij helpt. Is een extrusie-profiel een belangrijk onderdeel van je product dan is het zeker zaak hiervoor kennis op te bouwen. Waar begin je.

Er zijn een aantal regels die je in acht moet nemen om efficiënte profielen te realiseren.

Hiervoor kun je op verschillende plekken informatie vinden:

.

Heb jij een vraag over het ontwikkelen van profielen?
Stel de vraag hieronder in de comment box en je ontvangt alle 7 tips om aluminium profielen kostenefficiënt te ontwerpen …..

Ben jij engineer en heb je liever een cursus neem contact op.

Ben je toeleverancier? Bij deze een bijzondere uitnodiging:

Iedere leverancier nodig ik uit, de profielen die zij los verkopen, hieronder te delen met vermelding van toepassing. Deel de link van jouw catalogus, daar waar jouw profieltekeningen staan. Als de engineer wil zoeken kan hij direct de beschikbare profielen vinden. (Link toegestaan, mits die inhoudelijk naar de beschikbare profielen leidt!)

Aluminium groet

Ellen

Toen ik dit zag was ik op slag verliefd

Toen ik dit zag was ik op slag verliefd

Degenen die mij kennen weten dat toen ik een jaar of 15 was, mijn affiniteit voor aluminium ontstond. Mijn vader bracht voor mij gerekristalliseerd aluminium in de vorm van een sieraad mee. Het was een Sinterklaas surprise… en daar ontstond mijn voorliefde voor het materiaal. Pas geleden had ik weer zo’n moment. Ik was op een beurs E-Mobility en ik zag iets waarvan ik dacht dat is het.

 

Ik was verkocht. Mijn hart ging tekeer, en razend enthousiast liep ik terug naar mijn stand waar ik die dag mocht bijdragen. Ze keken me vragend aan en ik zei: ik heb het gevonden. Het duurde eventjes maar gedurende mijn verslag werd de nieuwsgierigheid gewekt. Ik dacht het zal wel vervagen, verdwijnen, voorbijgaan, slijten, misschien valt het wel mee en is het een bevlieging, maar ik kon het niet loslaten. Uiteindelijk besloot ik om een proefrit te maken. Dat had ik niet moeten doen… ik was verkocht. De elektrische motorfiets, die er zo onwijs stoer uitziet, je hoort hem niet, hij was niet alleen mooi maar hij reed ook nog eens perfect! Mijn oude CBR opofferen? Autsj, maar dat zwaar doortrapte schakelen zal ik niet missen, de robuustheid van de machine wel en zelfs het lawaai, maar wat ik er voor terug krijg is vele malen beter. Het volledig aluminium frame, accu’s met aluminium koelprofiel, zelfs de kickstart, de standaard, is van aluminium. Eén brok geweld. Wat een elektrisch vermogen. En het enorme koppel dat me over de snelweg doet razen, of heerlijk rustig en stil binnendoor laat sluipen over dijken en door bossen. Zoals de titel van dit blog al zegt, ik ben verliefd. Een elektrische motorfiets zonder geluidsoverlast, zonder CO2 uitstoot tijdens gebruik, goedkoop rijden, thuis aan de paal of enig ander stopcontact opladen.

 

Elektrische motorfiets - Zero SR

 

In de aanschaf wel duur, maar het voordeel van eigen baas; btw is aftrekbaar. Ik moet zeggen dat de goede service van uwvoertuig.nl, bij wie ik de fiets een dag gratis mocht huren, volgens hun voorstel onder het mom van een proefrit… erg bijzonder te noemen was. Dankjewel Frits! Ik heb zelfs de motorfiets mee naar huis gekregen en achteraf betaald maar dat mag ik niet aan iedereen vertellen natuurlijk. Wel dezelfde avond de betaling geregeld 😉 . Toen ik een proefrit maakte op de motor kreeg ook mijn man een elektrische motorfiets mee, een ander model zodat we konden wisselen en die ook konden proberen. Het is toch de SR geworden. Dus als je de motor met de kleur rood zwart en blonde haardos plus zwarte/rode pak voorbij ziet flitsen…

 

Ellen Vaders - elektrische motorfiets

 

Oh ja, ik was niet alleen verliefd. Thuis aangekomen was ik er ook nog eens danig ondersteboven van. Ja letterlijk dan en ook mentaal naderhand. Helemaal meester van dit gevaarte stapte ik af, ZONDER de zijstandaard uit te zetten. 3x raden wat er gebeurde. Gelukkig hielp de buurman me weer overeind, dank Victor. Mijn man heeft bij zijn eerste inspectie de gevolgen niet opgemerkt. Weer een compliment voor het ontwerp. Een mooi aluminium product: gaaf om naar te kijken, gaaf om te rijden en volledig toekomstbestendig.

 

Wat inspireert jou om je nieuwe product nog mooier, vetter, duurzamer en efficiënter te maken? Laat hieronder in de comment box je reactie achter en je krijgt de checklist voor een goed aluminium productontwerp cadeau. Alvast dank je wel voor je bijdrage!

 

Aluminium groet
Ellen

10 dingen die je moet weten als je aluminium wilt laten coaten…

10 dingen die je moet weten als je aluminium wilt laten coaten…

Aluminium coaten / lakken kan in alle kleuren van de regenboog. Denk aan fietsframes, rolstoelen, verkeersborden, etc. De laklaag is niet alleen een bescherming voor het materiaal het maakt het product aantrekkelijk en geeft betekenis voor de gebruiker.

Producteigenaren lopen wel eens tegen problemen met aluminium aan die meestal voorkomen kunnen worden.

Regelmatig krijg ik dan ook vragen binnen over het verfraaien van aluminium. Welke dingen moet je weten als je aluminium goed wilt laten lakken/coaten?

 

1. Allereerst laat een aluminium product altijd lakken. Zelf doen zowel zakelijk als prive is vragen om ellende als je niet de juiste installatie en kennis van zaken hebt.

2. Laat een product lakken door een bedrijf dat gespecialiseerd is in aluminium. Een bedrijf dat staal lakt zal een aantal cruciale stappen voor aluminium kunnen overslaan, of niet optimaal kunnen doen, waardoor de bestendigheid van de laag te wensen overlaat. Bijvoorbeeld kans op besmettingscorrosie, doordat ijzerdeeltjes het aluminium oppervlak vervuilen.

3. Een goed laksysteem hangt af van meerdere factoren. Kies bij voorkeur een legering die zich gemakkelijk laat lakken.

4. Aluminium heeft van zichzelf een natuurlijke oxidelaag waarop weinig hecht. Deze laag beschermt het onderliggende materiaal maar in geval van lakken zal deze verwijderd moeten worden. Na beitsen of schuren zal aluminium snel verwerkt moeten worden. Langer dan een paar uur laten liggen vermindert de betrouwbaarheid van de laklaag.

5. Het laksysteem van aluminium valt of staat met een goede hechting. Hiervoor is er bij aluminium een geschikte conversielaag nodig, voordat er een primer of laklaag kan worden aangebracht. Deze conversielaag zal ook binnen een bepaalde tijd, denk aan maximaal een paar uren, voorzien moeten worden van een laklaag.

6. Voor kustgebieden of pekelomstandigheden gelden zwaardere eisen ten aanzien van de coating dan voor binnentoepassingen. Vocht dringt in zekere mate een laklaag binnen en kan mogelijk schade veroorzaken. Hiervoor zijn verschillende oplossingen zoals een twee-laags laksysteem, deze heeft als het ware een extra barrièrelaag ingebouwd.

7. Wist je dat je in een aantal gevallen beter bruut (onbehandeld) aluminium liefst gepolijst, kunt toepassen dan een (transparante) laklaag die vervolgens in gebruik bijvoorbeeld door steenslag wordt beschadigd? Op dat moment komt er een spanningspiek op dat ene puntje onbehandeld aluminium waarvandaan corrosie een kans krijg. Denk aan autovelgen… De alcoa vrachtwagenvelgen hebben hier geen last van, mits ze schoon gehouden worden, en daar zit geen laklaag op.

 

Corrosie aluminium

 

8. Gebruik afgeronde hoeken in je design. Voor coaten is een radius van 0,5mm (dus geen scherpe kanten) nodig voor een goede bedekking van de randen. De verf heeft de neiging weg te trekken van de scherpe randen en we willen tenslotte een bepaalde laagdikte voor een optimale bescherming.

9. Test voor aluminium gecoated materiaal niet enkel in zoutsproeitest maar in een zure zoutsproeitest. Die geeft beter weer wat de kwaliteit is van het laksysteem. Hiervoor zijn speciale testprotocollen opgesteld.

10. Mocht er toch corrosie op het deel ontstaan dan is wegschuren de enige manier om vervolgens het proces weer volledig opnieuw te beginnen. Je product is dan echter wel iets dunner geworden..

 

Wil jij weten hoe je aluminium corrosie kunt voorkomen? Geef antwoord op de vraag:
Tegen welk probleem met coating ben jij als engineer wel eens aangelopen? Vermeld dit hieronder in het commentaarveld en je ontvangt de pdf “Aluminium design corrosion proof” in je mailbox.

 

Aluminium groet
Ellen

Wat niemand je vertelt over aluminium?

Wat niemand je vertelt over aluminium?

Wanneer je op een mechanische afdeling of op de R&D afdeling aan het werk gaat, weet je eigenlijk niet meer van materialen dan wat je op school of tijdens stage geleerd hebt.

En laten we eerlijk zijn; Materiaalkunde is meestal het vak dat als saaiste gegeven wordt.

Dan kom je op een afdeling en mag je ontwerpen en dan hoort daar ook een materiaalkeuze bij.

Lastig want meestal heb je daar vrij weinig kaas van gegeten. Je vraagt je ervaren collega’s. Die stellen je een paar vragen en zeggen dan “oh kijk maar naar dat onderdeel. Dan zit je wel goed.”

.
Hoe vaak gebeurt het niet dat oude materiaal aanduidingen tekening op tekening worden overgenomen? Vaak kan de materiaalkeuze optimaler. “Ja die keuze moet de engineer maken” roept iedereen “die moet dat toch weten”. Als engineer zijnde moet je heel veel weten. Gelukkig ben je met een team en kun je elkaar aanvullen en soms is er iemand die alles weet van materialen en soms moet je bij de ene collega zijn voor een vraag ten aanzien van aluminium en bij de ander voor een ander materiaal.

Maar wat niemand je vertelt is dat aluminium eigenlijk helemaal niet zo ingewikkeld is.

Als je het eenmaal snapt kun je het overal toepassen. Het aluminium is onderverdeeld in 8 hoofdgroepen. Afhankelijk van het legeringselement dat in hoogste percentage in het materiaal wordt toegevoegd.
Het doel hiervan is om het materiaal sterker te maken en de best mogelijke eigenschappen voor de toepassing te realiseren.

.
De hoofdgroepen zijn:

De 1000-reeks, belangrijkste “legeringselement” is hier aluminium, een zuivere kwaliteit met een aantal veel gebruikte legeringen. Goed vervormbaar en hoogglanzend maar niet erg sterk.

De 2000-reeks heeft als hoofdlegeringselement koper. Dit om het aluminium door middel van ingenieuze precipitaten sterker te maken. Het nadeel van koper is dat de corrosie bestendigheid negatief beïnvloed wordt.

De 3000-reeks, hoofdlegeringselement Mangaan. Dit zorgt ook voor een betere sterkte dan de zuivere kwaliteit maar is minder sterk dan de koperhoudende legeringen, echter de corrosie bestendigheid is over het algemeen erg goed.

De 4000-reeks bevat Silicium meestal in een percentage tussen de 7-12 %. Het silicium geeft behalve sterkte aan het materiaal ook gunstige eigenschappen ten aanzien van het vloeibaar vormgeven van aluminium, ofwel gieten.

De 5000-reeks bevat Magnesium. Het magnesium maakt het materiaal sterker dan bovengenoemde varianten, uitgezonderd de 2000 reeks met koper, en heeft ook nog eens zeer gunstige corrosie bestendigheid. Het magnesium zorgt dat de oppervlakte van het aluminium egaler en dus minder onaantrekkelijk zijn beschermende oxidelaag vormt. De zeewaterbestendige kwaliteiten vallen in deze categorie.

De 6000-reeks bevat een combinatie van Magnesium en Silicium. Deze combinatie is samen sterk en vormen samen precipitaten die als blokkades in de metaalstructuur het materiaal versterken. Hiervoor zijn specifieke recepten in combinatie met ovenbehandelingen de crux.

De 7000-reeks; Dit zijn de hoog-sterke legeringen die met de nodige voorzichtigheid moeten worden ingezet. Je kan er hele mooie sterke producten mee maken maar dit vergt echt kennis van zaken. Toepassen omdat het zo lekker sterk is levert veelal een teleurstelling op.

Een voorbeeld van een vaak toegepaste aluminium extrusie legering is: EN AW-6063 T6.

.
Aluminium is eigenlijk helemaal niet zo moeilijk. Er zijn een tiental legeringen die zeer goed verkrijgbaar zijn en afhankelijk van het product dat je wilt maken, kom je al snel tot een keuze. Loont het de moeite om voor jouw product een specifieke legering te “laten maken” zoals in automotive of voor Apple producten, of bijvoorbeeld de bijna nergens verkrijgbare 5083 extrusiekwaliteit voor marine en offshore? Er zijn legio aan mogelijkheden, hierbij is diepgaande kennis benodigd.

.
Wil jij weten welke legering je waar inzet?

Geef antwoord op de vraag: Welke legering zet jij het vaakst in?

Vermeld je antwoord hieronder in het commentaarveld en je ontvangt van mij de pdf met extra informatie en de tien best beschikbare legeringen. Ik wens je veel plezier met je volgende aluminium materiaalkeuze.

Lieve groet
Ellen

Welding and HAZ

Welding and HAZ

What is the length of the Heat affected zone, HAZ?

.

Engineers would like to have rules of thump.

So if we make a welding connection between tubes in the range of 50mm what would the size of the HAZ be? Although I would love to make the world of the engineers a bit easier this question cannot be addressed by a quick answer.

Due to the heat impact the material properties are negatively influenced. The higher the heat input is the more the mechanical properties of the alloys are influenced, for aluminium in the 5000 as well as in the 6000 series. For a tube in the 6000 alloy’s series this means that the mechanical values of a tube in T6 quality are approximately degraded to the T4 value at best (after a recovery period of ~3 months).

How come we can not give a straight answer to the question what length of the area is influenced?

The length of the HAZ is influenced by the heat input of the welding process. So the process type but also all the parameters of the welding process. (current, arc voltage, travel speed, etc.)

.

Two tips for the best result:

1. For MIG welding high current, high travel speed. (snoerend lassen NL)
2. For multilayer welds the interpass temperature of 50° C should be respected, independent of material thickness.

With these tips heat input is relatively low, full penetration in the weld is received, lack of fusion prevented and mechanical strength optimal as possible.

.

You can compare it with preparation of the famous Dutch kroket (Croquette). Welding aluminium is optimal if the heat input is balanced in the right way, for a kroket; shortly hot fried, delivering a nice brown crispy crust is and the meat inside warm but still relatively cold.

.

kroket vs lassen

.

Welding an aluminium tube to a casted bracket the bond-design is somewhat “secured”. If the heat input was too high the weld pool will sag through the weld, if the heat input is too low there is not enough fusion in the weld. Both ways the weld is disqualified.

For specific applications the HAZ can be determined, but if welder or weld supplier or any other parameter changes you better redo your qualification. To determine the quality of the weld best is to do a pre-production welding test and submit it to mechanical testing. To measure the HAZ you can ask a testcenter to investigate the microstructural material changes. If your process is stable you have some information about the length of the HAZ for FEM calculations.

For welding best rule of thump is place the joint at the area with the lowest strains as possible.

.

Are you an engineer and do you need to know more about a weld design for your application? Please type your question in the comment box below. If you are qualified I am willing to discuss your training needs or the design support you are looking for.

Other valuable input for engineers is also welcome and will be appreciated.

Aluminium greetings

Ellen. Many thanks for your input Kees Veeken!

Waarom van aluminium?

Waarom van aluminium?

Waarom is een fiets van aluminium?

We willen een licht product, we willen een robuust product, we willen een mooi product, we willen design, functionaliteit, en elektrisch aangedreven…

We willen steeds meer features op een fiets of een auto en toch moet hij lichter rijden, makkelijker fietsen, sneller accelereren, wendbaarder worden, mooier zijn dan alle anderen en zo min mogelijk kosten tenzij…. Hij zich echt onderscheidt… lichter, sneller, optimaler en goedkoper. Maar hoe dan?

Op dit moment zijn heel veel fietsen van aluminium, ook carbon en stalen fietsen hebben een deel van de markt maar 60% zo niet 70% is aluminium.

Waarom van aluminium? Prijs, vormgeving en aluminium heeft nu eenmaal een hoge specifieke sterkte. Dat wil zeggen sterkte ten opzicht van zijn gewicht. De EN AW-6082 T6 legering, veel gebruikt in de fietsindustrie heeft een treksterkte van 290 Mpa (σ0,2 van 250 Mpa) terwijl de dichtheid 2,7 kg/cm³ is. Standaard frame weegt dus iets van 5-7 kg. Dichtheid van staal is ca 7,8 kg/cm³, drie keer zo zwaar.

Is een aluminium fiets dan 3x zo licht? Nee helaas niet. Waarom niet? Omdat aluminium een stuk flexibeler, lees elastischer is. Deze materiaaleigenschap is de E-modules. Van aluminium is die 70.000N/mm². Drie keer zo slap dan van staal (210.000 N/mm²). Daar wordt in het ontwerp goed rekening mee gehouden en levert bijzondere fraaie framevormen op die je met andere materialen, zeker prijstechnisch, niet voor elkaar krijgt.

Materiaal eigenschappen aluminium

Dichtheid            2,7 kg/cm³

E-modules          70.000N/mm²

Smeltpunt           660°C

Uitzettingscoëff.  23 x 10¯6 / K

Het feit dat het aluminium niet weg roest en zelfs met weinig of geen lak er mooi uit ziet is dan nog een extra voordeel. Je zult je nu afvragen is het aluminium frame dan wel lichter…? Ja, als je een constructie met aluminium goed uitvoert kun je zo’n 40 % lichter construeren. Maak wel optimaal gebruik van de eigenschappen van het materiaal aluminium door een goede functieintegratie te kiezen.

Wil jij weten waar je aan moet denken voor een goed aluminium ontwerp?

Je krijgt van mij de aluminium checklist. Hiermee kun je controleren of je aan alles gedacht hebt om je aluminium product optimaal vorm te geven. Hoe ontvang je die?

Door hieronder in het commentaar veld de vraag te beantwoorden: waar loop jij tegenaan bij aluminium productontwerp?

Iedere reactie ontvangt van mij een mail met de aluminium checklist. Ik wens je veel plezier met je aluminium ontwerp.

Aluminium groet
Ellen